
Extensibility API Toolkit Guide
Oracle Banking Digital Experience

Patchset Release 22.2.1.0.0

Part No. F72987-01

May 2023

Extensibility API Toolkit Guide

May 2023

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2022, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Intended Audience .. 1–1

1.2 Documentation Accessibility ... 1–1

1.3 Access to Oracle Support ... 1–1

1.4 Structure ... 1–1

1.5 Related Information Sources .. 1–1

2. Introduction .. 2–1

3. Technology Stack .. 3–1

4. Pre-requisites ... 4–1

5. Write your First service .. 5-1

5.1 Obtain Toolkit ... 5-1

5.2 Set Environment Variables .. 5-1

5.3 API Generation using UI Toolkit .. 5-4

5.4 Write JSON .. 5-9

5.5 Generate JSON through Swagger file ... 5-13

5.6 Execute Gradle tasks... 5-14

6. JSON Explained .. 6-19

7. FAQs.. 7–1

Preface

1–1

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

 Customers

 Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

 Introduction

 Preferences & Database

 Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Patchset Release 22.2.1.0.0, refer to
the following documents:

 Oracle Banking Digital Experience Installation Manuals

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Introduction

2–1

2. Introduction

API Toolkit is a tool to generate new services as per the product framework. Users having host APIs
for core banking can now generate their respective channel APIs.

It takes a JSON file as an input that includes various fields, methods and other details pertaining to the
service to be created. The JSON carries set of keys whose values has to be provided by the user. On
the basis of the JSON input provided, the tool :

 generates source code.

 compiles and packages it into relevant jar and war files.

 generates various database scripts required for the functioning of the services.

Home

Technology Stack

3–1

3. Technology Stack

Software Version

Java Java JDK or JRE version 8

Gradle gradle-4.7

OBDX 20.1

Home

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Pre-requisites

4–1

4. Pre-requisites

 Java JDK or JRE version 7 or higher must be installed. For installation of the Java please refer

installation guide.

 User must have gradle-4.7 installed

 Provide the following dependency “javax.ws.rs-api-2.0.jar” in build.gradle of endpoint and

wherever required

Home

https://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Write your First service

5-1

5. Write your First service

Let us start with a Hello World Service. This section will help you in writing an end to end Hello World
service. The following needs to be done:

 You will need the API Toolkit.

 Set the home of the toolkit by adding an environment variable for it.

 Once the above two steps are done and all the prerequisites are fulfilled, you will be able to proceed
further with the execution of simple gradle tasks.

 Execution of the gradle tasks as mentioned below will get you the deployables (WARs) and the
database scripts (The order in which the tasks are executed must be maintained as provided in the
explanation)

 Deploy the WAR’s and run the database scripts.

 You can test your generated services.

The detailed steps for the first Hello World service is mentioned below:

5.1 Obtain Toolkit

User should download the API Toolkit zip from the Oracle Software Delivery Cloud portal

5.2 Set Environment Variables

5.2.1 Windows

Right click on This PC and click → Properties→ Advanced System Settings → Environment Variables.
Under System Variables select Path, then click Edit.

Write your First service

5-2

Write your First service

5-3

5.2.2 Linux

User should run the following command on the terminal:

export APITOOLKIT_HOME=<Location of APIToolKit folder>

e.g.

export APITOOLKIT_HOME=/vagrant/obdx/Tools/APIToolKit

The above mentioned step is depicted below:

5.2.3 IOS

User should run the following command on the terminal:

export APITOOLKIT_HOME=<Location of APIToolKit folder>

e.g.

export APITOOLKIT_HOME=/vagrant/obdx/Tools/APIToolKit

The above mentioned step is depicted below:

Write your First service

5-4

5.3 API Generation using UI Toolkit

You need to setup the UI Toolkit first. Refer to UI Toolkit setup documentation.

API Toolkit is integrated with this tool one simple has to perform all the pre requisites mentioned in the

API toolkit document and then click on the plus icon on the header and select API designing to use
the API Toolkit

Once UI Toolkit is up and running, Users needs to complete this following steps.

Open API Designing in UI Toolkit.

Step 1: Define your API Toolkit, Provide the API name and the module name

Write your First service

5-5

Step 2:

Declare your methods, give a name for your method without changing the initial letter i.e create, read, list
etc.

Click on Add and provide the attributes and entitlements for your method.

Write your First service

5-6

Step 3:

Define your DTO and its attribute in the third step.

Click on Add Attributes select the type of attribute (One key attribute is must) give the attribute name
and its datatype.

After successful completion Click on submit to generate the code.

Write your First service

5-7

After successful build you project will get generated in APITOOLKIT_HOME > output >
com.ofss.digx.cz.module.{moduleName}

__

Note: In order to generate a module for obdx kernel mode the user needs to add an xml in the
APITOOLKIT_HOME which can be found in the svn repository.
The module is generated according to the latest modularized framework. It won’t be able to generate files
for old OBDX frameworks.

It will create a skeleton adapter-impl for your module in output > adapter-impl folder in which you can
implement the adapter’s which you want to use.

It will also generate an ext-xface implementation for your module in output > ext-xface > ext-xface-impl
folder
The generated module is a gradle project hence you can import it into any IDE.

Write your First service

5-8

5.3.1 Gradle Repository

API Toolkit now imports the jars from gradle/maven repositories.

Hence the user outside OBDX framework needs to maintain a gradle/maven repositories in order to import
the OBDX framework jars.

User simply has to provide the repository URL in APITOOLKIT_HOME > output > artifactory.properties
with “,” separated values

Write your First service

5-9

5.4 Write JSON

This is the most important part of toolkit. The toolkit takes this JSON as input in the form of JSON file. It
is where you need to write the details pertaining to the Service to be generated.

The details for the “Hello World” service to be put in the JSON is given below :

For details of each and every field of the input JSON please refer section 6(JSON Explained). It is known
that every functionality in OBDX runs on underlying domain.

 This JSON for the Hello World has a domain name “HelloWorld” which belongs to a submodule “world”
of the “hello” module. You’ll be able to reach “HelloWorld” resource at path “/hello”.

HelloWorld functionality allows various operations such as ‘create’, ‘read’ which is provided in the JSON
as an array of methods and it consists of various fields which are to be provided in typeDetailsDTO’s. The
type(8) represents the type of domain name. If it is not provided by the user, then it is deduced from
domain name, module name and sub module name. The typeDetailsDTO’s (7) and methods (6) details
put in the HelloWorld input JSON is given below:

Write your First service

5-10

The above snippet is of the typeDetailsDTO’s in which fields or variables to be declared in the HelloWorld.
It is an array in which each element consists of fields,type, typeAttrDTO and enumeration. User has to
define one of these fields as key of the HelloWorld domain. Here the key is ‘id’ variable (as can be seen
its attributes ‘key’ carries ‘true’ value. Another field is a list of strings followed by ‘birthdayWishes’ of type
BirthdayWishes. For details of preparing fields array please the JSON Explained section(Section 6).

Write your First service

5-11

The above snippet is of another element of typeDetailsDTO array. It represents the type BirthdayWishes
comprising of the fields ‘birthDate’ and ‘birthPlace’.The typeDetailsDTO has certain attributes like
typeAttrDTO and enumeration

Write your First service

5-12

The above snippet is of the ‘methods’ in the HelloWorld, which again is an array, each element
representing one method. In HelloWorld we have two methods create and read hence two elements. The
methods has certain attributes like taskType, moduleType and txnType. If the ‘entitlements’ is provided
empty value the tool will generate default entitlements for it. For details regarding the possible values in
there attributes please refer section : JSON Explained.

The above snippet is of the version folder which contains AspectAttributesConfig.json and
version.properties. version.properties contains the OBDX version(for which the artifacts are to be
generated). Based on the version, the corresponding aspectAttributes are selected from the
AspectAttributesConfig.json. This JSON consists of different transaction types with their corresponding
attributes. With the help of this JSON and txn type mentioned in the methods of input JSON, the
domainName#AspectAttributes.json is generated which is shown in the below Figure. Now ,the user has
to fill the corresponding attributes in domainName#AspectAttributes.json from input JSON. For that
purpose user has to check the fields (declared in the domain) corresponding to each attributes. Aspect
attributes are mandatory.

Write your First service

5-13

If any operation added has a task Aspect “approval” or ”limit” then user has to fill the
corresponding data in this file else not required.

accountType#AccountType : Value of Enumeration of AccountType (e.g #CSA)

accountId : attribute used to define the accountId

accountPartyId : attribute used to define the account Party Id

partyName.fullName : Name of the Party from attributes

amount:approvalAttrs: attribute of varAttr type amount which will be used as approval amount

5.5 Generate JSON through Swagger file

If the user has the required Swagger file, then its location must be provided.

Write your First service

5-14

Here we use " AccountInfoSwaggerV3.json" as a sample shown above.

The above snippet depicts the Swagger file location. Now user will be shown a list of URI's that is available
in the file. The snippet of the list is shown below.

He will be allowed to choose the URI's to be onboarded. Each URI will correspond to a particular domain.
After selecting the URIs, respective JSON files will get created at the file location:

APITOOLKIT_HOME/input/json/<DomainName>.json, which can be used further to generate the
respective artifacts generation.

5.6 Execute Gradle tasks

Now that you are ready with your input JSON and the pre-requisites are done you are eligible to run
required gradle tasks. There is a list of gradle tasks which needs to be run in the provided order. These
tasks will generate source code, furnish eclipse projects for the generated code, build the source and
provide the deployable WARs in the <APITOOLKIT_HOME>/ output/deployables folder.

Before moving forward have a look at the folder structure of the toolkit.

The <APITOOLKIT_HOME> has input, output , logs folders that are going to be required in further
steps. The <APITOOLKIT_HOME> is depicted below in the snippet.

Write your First service

5-15

 Input folder

It is where the input JSON has to be provided. The HelloWorld.json (input JSON for HelloWorld) can be
seen below:

 output folder

Output folder has deployables, scripts, swagger, etc.

 seed/oracle

It is where the required SQL scripts will be generated.

 logs folder

It is where the logs of the toolkit will get generated.

 gradle swaginput

This command fetches the Swagger file from the specified location and generates the corresponding input
JSON files.

 gradle precodegen

It generates the domainName#AspectAttributes.json as per the transaction type and
AspectAttributes.json in the <APITOOLKIT HOME>/input/json location

Write your First service

5-16

 gradle codegen(*)

It generates the source code as per the input provided as JSON. So before you execute this task make
sure you have the prepared input JSON placed at <APITOOLKIT_HOME>/ /input/json

 gradle build(on generated module)

 You can directly import your gradle project into an IDE or else you can execute gradle build
command on command line

Write your First service

5-17

 gradle thirdpartygen

This task will get you the third party deployables. It basically generates the simulation MDB WARs which
mocks the third-party host.

 gradle swagger (on generated module)

It generates a swagger document that comprises details of the generated REST API.

This document must be hosted and that URL must be provided to UI Workbench. Details regarding how
to use this document is mentioned in the user guide of UI Workbench.

The swagger will get generated on the particular path APITOOLKIT_HOME > output >
com.ofss.digx.module.{moduleName} > com.ofss.digx.appx.{moduleName}.endpoint > build

Write your First service

5-18

Note: In case the user needs to change the input JSON as per changed requirement please execute
the below task before performing the above-mentioned steps for the updated JSON:
gradle clean

JSON Explained

6-19

6. JSON Explained

User should prepare the JSON with right set of values of the keys/nodes. A sample JSON is depicted
below in the Figure3.1. The JSON is set with sample values for a mutual fund holdings functionality under
payments. As part of the explanation, some of the JSON nodes or fields or keys may differ from the
sample JSON provided (It has been done to explain functionalities which cannot be covered using just
sample JSON) . Each and every key/node of the JSON is explained below:

 domainName(*): User has to input the name of the domain entity which represents one business use
case. e.g. Holdings i.e. mutual fund holdings is a domain(a business use case under payment
transactions)

 moduleName(*): User should provide the name of the module to which this domain functionality
belongs to.eg. Holdings domain belongs to “mutualfund” module.

 subModuleName: It is common to have module constituting of sub-modules. User should set the

appropriate name of the sub-module (depending upon the domain functionality).

 moduleCode(*): It is basically an abbreviated unique identifier of the module to which the service
belongs . It is formed by taking the initials of the module name. “moduleCode” has to be decided by
the user. Here “MF” is formed by taking initials of the “mutualfund” module

e.g.

JSON Explained

6-20

Here “MF” is formed by taking initials of the “mutualfund” module.

 uri(*):It is the path of the REST resource. It is the path exposed to the end user, of the product channel

(as REST API). This is the URI which will appear in the swagger JSON created using the tool.

This is the URI which will appear in the swagger JSON created using the tool.

 methods(*): User should provide the methods which are expected in the domain. A combination of
“name” and “operationType” nodes uniquely defines a method. The “methods” node is an array of
methods defined in the domain. Part of the JSON depicting methods is presented below:

 name(*): User should provide the name of the methods. A method name depicts the operation that
the user wants to perform by calling this method. For example

 operationType(*) : Operation type is synonymous to REST operation type. So the method with
operationType ‘CREATE’ will result in creation of a new resource at the specified URL (similar to what
REST “POST” operation does).

User must provide the functionality the method is going to perform. It should be one of the following list

of strings: ‘CREATE’, ‘READ’, ‘UPDATE’.

If the method performs creation task it should have operation type as “CREATE”.

 methodAttributes: Method or Operation defined in the application carries various properties which
defines its behavior. For example an operation or a method can go for approval. In order to ensure
that the declared method has the property to go through approval process the task aspects of the
task attribute must have a value “approval”. These properties which attaches various behaviors to the
application, facilitates various application requirements such as swagger UI generation, etc. are taken
as input by the Toolkit in the form of “methodAttributes”.

It has various attributes such as ‘task’, ‘entitlements’, ‘swaggerAnnotations’, ‘allocation’

JSON Explained

6-21

User should provide various attributes of the methods such as tasks associated with them, entitlements
allocated to them and swagger details.

 task: User should provide the details of the task associated with the method

 taskName: User should declare name of the task associated with the current method

 accountTypes: User should provide the supported account types by the current transacting method.

The set of all possible values that a user can provide are given below in the table with its description:

For detailed values to be input in the “accountTypes” please refer below table

Sr. No. AccountTypes Description

1 CSA “CSA" refers current and savings accounts

2 LON "LON" refers loan accounts

3 TRD "TRD" refers term Deposits

4 CCA "CCA" refers Credit card accounts

JSON Explained

6-22

 taskType: User should provide the type of the transaction that this method will be using. It can be a

maintenance transaction or can be an auth-admin transaction, etc. The set of possible values that a
user can provide is given below in the table

Sr.
No.

TaskType Description

1 FINANCIAL TRANSACTION Transactions involving account and amount i.e.
monetary transactions

2 NONFINANCIAL
TRANSACTION

Transactions involving no monetary value.
For e.g. Request a cheque book

3 INQUIRY Inquiry of transactions

4 ADMINISTRATION ADMINISTRATION

5 MAINTENANCE MAINTENANCE

6 COMMON COMMON

 taskAspects: User should provide the details of the aspects of the transaction associated with the

current method. An aspect of the transaction defines a feature inherently provided by the framework.
For example “approval” is feature of the transaction which it is going to need while execution.
Similarly, there are various features like limit, two-factor authentication(2fa), audit, etc. which the
transaction can be dependent upon (based on use case of the transaction).The set of possible values
that taskAspects can carry are :

Sr.
No.

TaskAspects Description

1 limit Applicability of limits for a transaction

2 account-access Applicability of access for a transaction

3 approval Applicability of approval rules for a transaction

4 working-window Applicability of working window i.e. cutoff for a
transaction

5 blackout Applicability of blackout or outage for a transaction

6 2fa Applicability of two factor authentication for a
transaction

7 audit Applicability of audit log for a transaction

8 grace-period Applicability of grace period for a transaction

JSON Explained

6-23

Sr.
No.

TaskAspects Description

9 eReceipt Applicability of e-Receipt for a transaction

10 purpose-mapping Applicability of purpose mapping to transaction

11 currency-config Applicability of currency mapping to transaction

12 account-relationship Applicability of access on the basis of account
relationships

 moduleType: User should provide the type of the module.

Sr. No. moduleType Description

1 TD TERM_DEPOSIT

2 CH CASA

3 PI PARTY

4 LN LOAN

5 OR ORIGINATION

6 PC PAYMENTS

7 AT CHANNELS

8 CC CREDIT_CARD

9 SMS SMS

10 FL FINANCIAL_LIMITS

11 WA WALLET

12 BO BACK_OFFICE

13 FU FILE_UPLOAD

14 AP APPROVALS

15 NM NOMINEE

16 AL ALERTS

17 PFM PFM

JSON Explained

6-24

Sr. No. moduleType Description

18 RT REPORTS

19 LC LETTEROFCREDIT

20 BL BILL

21 CM COMMON

22 BM BENEFICIARYMAINTAINANCE

23 GR GENERICREST

24 MT ADMIN_MAINTENANCE

25 FX FOREXDEAL

26 MB MOBILE

 txn type: User should provide the type of the transaction

 entitlements:

Entitlements are meant to group transactions. Transactions can be grouped into categories and further
into sub-categories.

 For example a user onboarding transaction can be grouped into “Admin Maintenance” category and
further into “User Management” sub-category. User should provide the details of category into which the
currently executing method can be grouped with a further sub-category level grouping. e.g.

There is a list of groups and sub groups provided in the table below.

Sr.
No.

Entitlement Category Description

1 MT Entitlement Category constant for 'ADMIN MAINTENANCE'

2 RP Entitlement Category constant for 'REPORTS'

3 CS Entitlement Category constant for 'CUSTOMER SERVICING'.

JSON Explained

6-25

Sr.
No.

Entitlement Category Description

4 CASA Entitlement Category constant for 'CURRENT SAVING
ACCOUNT'

5 TD Entitlement Category constant for 'TERM DEPOSIT'

6 LN Entitlement Category constant for 'LOAN'

7 PC Entitlement Category constant for 'PAYMENTS'

8 FU Entitlement Category constant for 'FILE UPLOAD

9 TF Entitlement Category constant for 'CREDIT CARDS'

10 CC Entitlement Category constant for 'CREDIT CARDS'

11 PFM Entitlement Category constant for 'PERSONAL FIANANCE
MANAGEMENT'

12 FX Entitlement Category constant for 'FOREX'.

13 EBP Entitlement Category constant for 'ELECTRONIC BILL
PAYMENT'

14 MB Entitlement Category constant for 'MOBILE APP
MAINTENANCE'

15 PRL Entitlement Category constant for 'PRE LOGIN'

16 OR Entitlement Category constant for 'Originations'

17 ENUMP Entitlement Category constant for 'ENUMERATION'

18 AUTH Entitlement Category constant for Authentication

If there are no groups or sub-groups into which the current transaction can be put then the user needs to
add a new category and sub-category.

JSON Explained

6-26

Sr. No. Entitlement Sub
Category

Description

1 SC System Configuration

2 SR System Rules

3 LMD Limits Definition

4 UL User Limits

5 LMP Limits Package

6 TG Task Group

7 SPC Spend Category

8 SPCM Spend Category Maintenance

9 GOC Goal Category

10 PYP Payment Purpose

11 PYR Payee Restrictions

12 BCM Bill Category Maintenance

13 BCMUBS Bill Category Maintenance UBS

14 UM User Management

15 MOB Merchant Onboarding

16 AUTH Authentication

17 MSS Manage Security Settings

18 PPL Password Policy

19 TXB Transaction Blackout

JSON Explained

6-27

Sr. No. Entitlement Sub
Category

Description

20 WW Working Window

21 UGSM User Group Subject Mapping

22 UGM User Group Management

23 ALM Alert Maintenance

24 BR Brand Management

25 DSHBD Dashboard Management

26 AL Audit Log

27 AUL Audit Logging

28 ABM ATM Branch Maintenance

29 PDM Product Mapping

30 ML Mailers

31 MGB Manage Brands

32 TXA Transaction Aspects

33 PPI Password Print Information

34 OWC Origination Workflow Configuration

35 PL Party to Party Linkage

36 PAC Party Account Access

37 UAC User Account Access

38 LUAC Linked User Account Access

JSON Explained

6-28

Sr. No. Entitlement Sub
Category

Description

39 LPAC Linked Party Account Access

40 FIM File Identifier Maintenance

41 UFIM User FI Mapping

42 AWC Approvals Workflow Configuration

43 SVR Service Request

44 PP Party Preference

45 RM Rule Management

46 URM User Report Mapping

47 RPM Reports

48 RPV Reports View

49 RPC Corp Admin Reports

50 RPU User Reports

51 MN Mailbox Notifications

52 MAIL Mails

53 ALT Alerts

54 NO Notification

55 PF Profile

56 SS Session Summary

57 LOC ATM Branch Locator

JSON Explained

6-29

Sr. No. Entitlement Sub
Category

Description

58 SCS Security Setting

59 HELP Help

60 CSAAD CASA Account Details

61 CSASM CASA Statement

62 CBR Cheque Book

63 DC Debit Card

64 CSACA CASA Calculators

65 TDAD TD Account Details

66 TDSM TD Statement

67 TDTSN TD Transactions

68 TDCA TD Calculators

69 LNAD Loan Account Details

70 LNSM Loan Statement

71 LNTXN Loan Transactions

72 LNCA Loan Calculators

73 CCAD CC Account Details

74 CCSM CC Statement

75 CCTXN CC Transactions

76 PYT Payments Transfers

JSON Explained

6-30

Sr. No. Entitlement Sub
Category

Description

77 ADPY Adhoc Payment

78 IntPaye Internal Payee

79 DP Domestic Payee

80 DPR Domestic Payer

81 IP International Payee

82 DDP Demand Draft Payee

83 BM Biller Maintenance

84 CBM Customer Biller Maintenance

85 DD Demand Draft

86 BP Bill Payment

87 RMT Remittance

88 UP Upcoming Payments

89 RF Request Funds

90 FT Favorite Transactions

91 PPP Peer To Peer Payee

92 GO Goal

93 SP Spends

94 BD Budget

95 AS Alert Subscription

JSON Explained

6-31

Sr. No. Entitlement Sub
Category

Description

96 TPC Third Party Consent

97 LM Limits

98 FUTXN File upload transactions

99 FUT File Uploads

100 FUA File Upload

101 TFLOC Letter Of Credit

102 TFLOCA Letter Of Credit Amendment

103 BAC Bills And Collection

104 OWG Outward Guarantee

105 OWGA Outward Guarantee Amendment

106 GL General

107 ACL Activity log

108 PLT Pre Login Transactions

109 SRFB
Service Request - Form Builder Sub Category, under
category 'Admin Maintenance'.

110 FDM
Feedback Maintenance sub category under category
'Admin Maintenance'

111 NM
Nominee sub category under category Customer
Servicing.

112 FXDB Forex deal booking sub category under category 'Forex'.

113 PMNT Payment maintenance sub category

JSON Explained

6-32

Sr. No. Entitlement Sub
Category

Description

114 RTM
Role Transaction Mapping sub category under category
'Admin Maintenance'.

115 EBR
Favorites sub category of EBPP under category 'Electronic
Bill Payment'.

116 EBL
Bills sub category of EBPP under category 'Electronic Bill
Payment'.

117 AGR
 Favorites sub category of Account Aggregate under
category 'Account Aggregation'.

118 EPY
Manage Billers sub category of EBPP under category
'Electronic Bill Payment

119 MCL
 Mobile Client sub category under category 'Mobile
Application'

120 BFM
Manage Billers sub category of EBPP under category
'Electronic Bill Payment'

121 MSWPIN
Manage Sweep-in sub category under category 'Customer
Servicing'.

122 FXDM
Forex Deal Maintenance sub category under category
'Admin Maintenance'.

123 ARM
Account Relationship Mapping sub category under
category 'Admin Maintenance'.

124 FAM 2 factor task auth maintenance.

125 ORP
Origination products sub category under category 'Pre-
Login'

126 ANN
Account Nick name sub category under category
'CUSTOMER_SERVICING'.

127 BU
Business entities sub category under category
'CUSTOMER_SERVICING'.

JSON Explained

6-33

Sr. No. Entitlement Sub
Category

Description

128 ACPU
 Access Point sub category under category
'CUSTOMER_SERVICING'.

129 FR Fund Request sub category under category 'PAYMENTS'.

130 ANUM Enumeration sub category under category Enumeration.

131 FCL
FATCA Compliance sub category under category
'CUSTOMER_SERVICING'

132 FDB
Feedback sub category under category
'CUSTOMER_SERVICING'.

133 SAD
Service Advisor sub category under category
'CUSTOMER_SERVICING'

134 ORC Origination sub category under category 'Originations'.

135 AP
Approvals sub category under category
'CUSTOMER_SERVICING'.

136 ACPM
Access Point Maintenance sub category under category
'CUSTOMER_SERVICING'.

137 HDS
Help Desk Session sub category under category 'Admin
Maintenance'.

138 APA
Access Point Account Access under category
'CUSTOMER_SERVICING'.

139 SECQUE Security Question

140 TASK Task

141 SB SMS Banking

142 SRFL
 Service Request - Form Listing Sub Category, under
category 'Customer Servicing'.

143 UPS Preferences of the user.

JSON Explained

6-34

Sr. No. Entitlement Sub
Category

Description

144 BC Base Configuration

145 FUFT File Upload Funds Transfer.

146 FUP File Upload Payee

147 GR Generic Rest

If there are no groups or sub-groups into which the current transaction can be put then the user needs to
add the new category and sub-category. Guide to add new categories and sub-categories can be found
here.

 swaggerAnnotations:

User should provide the details required for the swagger specification. In swagger documentation for each
path(@path Annotation in REST) multiple operations(HTTP methods) can be defined . Swagger defines
a unique operation as a combination of a path and an HTTP method. For each operation(HTTP method)
there is a summary section and details section in the documentation. On clicking the operation box in
swagger one can get details section. The details section consists of description, parameters, request
body and responses. Further swagger details can be found here.

“swaggerAnnotations” takes the values relevant for generating the required swagger document. It takes
summary, description, tags and API responses.

e.g.

 summary: The value input in this field appears in the operation summary of the swagger
documentation. The required content in the summary section for the current method(i.e. REST
resource or REST URL +) should be provided here.

 description: User should provide the description of the method(i.e. REST resource).

 tags: Swagger uses tags to group the displayed operations. User should provide the relevant details
of grouping and its description.

 apiResponses: For the current API operation all the possible responses are listed here.

JSON Explained

6-35

e.g.

 responseCode: Response code or HTTP status code of the REST response should be provided by
the user.

e.g. ”201” - if the request has been fulfilled and has resulted in one or more new resources being created.
“400” – if the server cannot or will not process the request due to something that is perceived to be a
client error.

 description: Description of the http response should be provided here.

 content: It consists of mainly two things mediaType and schema.

 MediaType: User should provide what media type the REST resource produces.

e.g.

“application/json” for JSON,

“application/xml” for XML.

The “content” node of the input JSON is depicted below in the image:

JSON Explained

6-36

 schema: It is used to describe the REST response body of the respective method. It can define an
object or a primitive data type (for plain text responses) or a file. For the object or primitive data type
in the response user must provide its packageName and className.

 allocationTiers: User should provide the details of the tiers (REST, SERVICE, DOMAIN,
REPOSITORY) in which the method should be present. It is not a mandatory field. By default the
method is created in all of the tiers

e.g.

 MutualFunds typeDetailsDTOs:

 TypeDetailsDTOs array consists of multiple elements representing any Java type (i.e Class or Interface
or enumeration) . Each element has child nodes “fields”, “type”, “typeAttrDTO” and “enumeration”.

 fields(*):

All the variables which user intends to declare in the domain are taken care of by this node/key. This
node/key stands for the Java type (i.e. Class or Interface or enumeration) or variables or fields to be used
in the domain (here ForexDeal) and its required details. This node has further child nodes “type” i.e. Java
type for variable, “attrs” for attributes of the Java type or variable or field and “detailsDTO” for other details
of the Java type or variables or fields. Other details are provided in case the field is in itself is a type
containing further fields. Part of the JSON carrying the sample values of this node is depicted below:

JSON Explained

6-37

 type(*): “type” here is the Java type(Class or Interface or enumeration) which takes the qualified
name (i.e package name and class name) as input. It consists of further child nodes depicted below:

 packageName: User should provide the package name of the variable to be declared. It must
be left empty if the variable is a domain key

 className: User must provide the class name of the variable to be declared

 name(*): User should provide the reference of the variable at this node/key as can be seen in the
figure.

 e.g

 varAttrs : A variable declared can be an amount, account, party, queryParam or key of the domain
and the corresponding attribute has to marked as ‘true’.

 key: In a domain there is key which is a unique identifier for each domain object. User must
provide this key value as “true” if this field is the key of the domain and “false” in case it is a
normal variable.

 A key can be a composite key i.e. multiple fields combined together to form key. In case of
composite key user must provide the “key” attributes as true for all those fields which forms the
composite key.

 amount: User must provide this amount value as “true” if a particular field represents an amount.

JSON Explained

6-38

 account: User must provide this attribute as “true” if a particular field represents an amount.

 queryParam: Query Parameter is used to sort/filter a specific resource. This variable attribute
is marked as “true” if it represents a query parameter.

 party: User must provide this attribute as “true” if a particular field represents a party.

 type: ‘type’ is another node of typeDetailsDTOs. It is again the Java type(Class or Interface or
enumeration) which takes the qualified name (i.e package name and class name) of the custom
domain as an input.

 typeAttrDTO: A variable can be a Java class of an API or can be a user defined class. If it is a user
defined class or custom class it is possible that it is an existing domain or variable.

 custom: A declared field can be a Java type (Class or Interface) which is not a class of existing
Java packages instead are defined by the user. Those user defined fields are custom fields.
e.g String class is a class of existing Java package java.lang so String fields are not custom
fileds but com.example. Student is a user defined Class (hence custom filed).

This node is a Boolean which takes values depending upon the variable declared is a class
of an API or it is a user defined class. If this key carries “true” it means the class is user
defined class.

 exists: This is also a Boolean which takes values depending upon the variable declared in the
domain is an existing domain or it is new domain at all.

If user provides this value as “false” then a completely new domain is created by the
tool. User should provide this as “true” in case the domain already exists.

 enumeration: This key is a Boolean. If this variable is an enumeration then user must provide “true”
value to this JSON node. It is not a mandatory field. If user doesn’t provide any value the tool assumes
it to be a Java type other than enumeration.

If the user is going to declare a variable which in itself is a domain or is another class (e.g
enumeration) carrying fields then user must provide the details of the variables to be declared in
that domain or class. A separate element should be added in the TypeDetailsDTOs array by the
user to represent such domain. Part of the JSON with sample values are depicted below:

JSON Explained

6-39

Here user should provide the details of the fields to be declared in this new domain
TypeDetailsDTO. If this new element is of enumeration type then ‘enumeration’ will carry ‘true’ as
shown in the snippet. ‘fields’ asks for type, name, mock value and further details.

 name: User should provide the details of the variable to be declared in the new class or
enumeration.

 mockValue: Mock value must be provided in case of enumeration. The user should provide the
value to be obtained in each constant declared in the enumeration. It can be seen in the below
snippet.

 genericType: The below snippet demonstrates creation of fields pertaining to classes
supporting generics. The most frequently encountered example being list , let’s see how to
have a list of strings as a field in a domain.

JSON Explained

6–22

Within the “type” of the field provide a generic type JSON array where each element of the array
provides the package name and the class name of the parameterized types. In the example above
the parameterized type is a String class of Java.

Home

FAQs

7–1

7. FAQs

1. How do I specify which field is used for READ operation ?

To specify a field to be used in the READ operation the user must provide the value of the “key”
of the “attributes” of the particular field in the input JSON as true. Please refer “fields” in the
section 5 JSON explained.

2. Can we edit the generated source code ?

Yes, one can import the generated source code (after running gradle task “gradle eclipse”) from
<APITOOLKIT_HOME>/output folder. Make sure the next tasks “gradle build” , “gradle
thirdpartygen” are executed after it.

3. Can I run the gradle tasks at any windows location?

No, User must run the gradle tasks at the <APITOOLKIT_HOME>.

4. Is it mandatory to execute gradle thirdpartygen task?

The task thirdpartygen generates xml with mock values only for simulation purpose of third
party setup. It further packages these xml into ExtxfaceSimulatorMDB.war which is deployed
only in a simulation environment. In environments interacting with actual hosts this is not
needed.

5. Where are the SQL scripts generated?

At <APITOOLKIT_HOME>/ output/seed/oracle.

6. Can I generate two different services in the same module?

Yes, user just need to place the two JSONs for respective services at
<APITOOLKIT_HOME>/input/json.

7. Can I generate two different services in two different modules?

Yes, user just need to write two different JSONs with the required moduleNames in each
JSON. Place the two JSONs for respective services at <APITOOLKIT_HOME>/input/json.
That’s it.

Home

